

bento-dash

Package Documentation

	Introduction

	Quickstart
	Installation

	Run Demo

	Modify Demo

	Fallback

	Bento Builder

	Concepts within Bento
	Data

	Pages

	Banks

	Connections

	Layout

	Beginner Tutorial
	Features

	Data

	Environment

	Descriptor

	API Reference
	Bento class

	Descriptor schema

	Utility functions

Introduction

Bento is a tool for building interactive dashboard applications, powered by
a templating engine built on Plotly Dash [https://plotly.com/dash/]. It lets you
write a high-level description of your desired interactive dashboard and generates
the application code for you. By providing a set of common building blocks and
abstracting away some of the more complicated aspects, it aims to flatten the learning
curve of dashboarding!

	Bento follows a few principles in its goal of improving user productivity:
	
	Focus on one powerful, high-level object called the descriptor

	Allow users a selection of ready-made building blocks called banks

	Automatically handle component interactivity infrastructure

	Provide a simple theming and layout experience

An analogy can be drawn between Bento and desktop computer hardware. A motherboard ties
together several different components in a way such that assembly can be performed
without advanced knowledge of each piece. The user is just tasked with understanding
what they want out of the finished product. In a similar way, creating the Bento
descriptor should be as simple as understanding what you want the dashboard to do and
then finding the right banks from the catalog.

For some inspiration, check out some sample Bento apps in this gallery [https://github.com/dereklarson/bento_gallery].

To get a sense of what Plotly Dash can do, visit their app gallery [https://dash-gallery.plotly.host/Portal/].

Quickstart

To get started with Bento, we’re going to walk through a few quick steps:

	Installation

	Run the demo dashboard

	Modify the demo

	Fall back to straight Plotly Dash

	Clone Bento Builder

Installation

Dependencies: Python 3.7+

Bento is available on PyPI, and the latest version can be installed with:

$ pip3 install bento-dash

Run Demo

To make sure everything is working, try running the demo app:

$ bento-demo

And navigate in your browser to localhost:8050.

Modify Demo

To get a quick taste of the Bento experience, now run the following:

$ python3 -m bento.dashboards.demo
$ python3 -m bento.launcher

The first will write out a copy of the demo descriptor to your current dir.
You can then open that up and modify it while the server from the second
command is up.

	It’ll be hard to know what to change, so here’s a few quick things to try:
	
	Comment out the "theme": "dark" line (Refresh your browser so the CSS updates!)

	Comment out and of the pages from the descriptor top-level

	Reorder the layouts

	Comment out any bank

	Disconnect a bank by removing it from the connections

Fallback

At any point, if you’ve started an app with Bento but can’t figure out how to
go further, you can always continue by editing the base app code. After either
of the last steps, you will have a bento_app.py file plus associated files
in assets/ (check the log output while running Bento). These can be edited,
and then you can run the changes with:

$ python3 bento_app.py

Note

Bento does make use of several utility functions included in the bento Python
package. To fully be independent, you’d need to copy those over as well.

Bento Builder

If you’ve jumped through the above hoops and are looking for a way to develop
efficiently, I recommend cloning/templating from the Bento Builder [https://github.com/dereklarson/bento_builder] repo! Some quickstart steps
are available in the readme.

Concepts within Bento

	These two example dashboard descriptors will be useful for reference:
	
	Simple [https://github.com/dereklarson/bento/blob/master/bento/dashboards/simple.py]

	Demo [https://github.com/dereklarson/bento/blob/master/bento/dashboards/demo.py]

Data

Everything begins with data, and Bento doesn’t try to assist with the data processing.
It is assumed you will supply your dashboard with prepared data in a pandas DataFrame.
This helps decouple your visualization code from any data preparation code.
However, Bento does inform the dashboard by what’s in the data. For example, dropdown menus
for filters can be automatically populated by what is in the dataframe.

You define all datasets used in the dashboard up front in the “data” key of the descriptor.
Each dataset needs a unique ID (uid) and a module that contains the code to load it.
In the Simple example, we loaded the data by the uid “covid” via the module
bento.sample_data.covid
which contains a method “load” that returns an object containing the dataframe.

In your generated Bento app, the data is stored in a global variable and accessed by key.
This tends to be simplest at the page level, through the “dataid” key.
This can be overridden at the bank level, however, if needed.

Pages

To Bento, a page is just about what you’d expect: everything associated with a given URL.
Bento tries to make page navigation easy out of the box, with an autogenerated appbar.
The downside to this: you still have to define your “pages” even if you want a single-page app.

Overall, the page definition is rather easy–each page needs a unique ID.
The main descriptor “pages” key defines a dictionary with these unique IDs as keys and
the individual page descriptors as values.

The Simple example demonstrates a single page while the Demo has multiple.

Banks

The banks are the building blocks of your Bento app.

You define your banks under a page’s “banks” key, each with a uid and a dictionary
containing at least the “type” key, which would be chosen from the list below.

Connections

One of the trickiest parts of making an interactive dashboard in Plotly Dash is getting
components to properly work together. At the same time, it’s one of the areas which
tends to be the most repetitive once you understand it. This is a big part of what makes
Bento useful. Bento abstracts away any need for writing callbacks by defining
“connections”: which banks feed which other banks. If you want a bank to affect another
one, connect them.

In a page descriptor, the “connections” key is just the set of “source” bank uids which
defines, for each, the set of “sink” bank uids. In the Simple example, our axis_controls
named “axis” feeds our graph called ”trend”.

Layout

This is the easiest part. Just write a 2D-list of the bank ids, imagining a grid. Each
page descriptor should have this in a key “layout”, such as in Simple where we have two
rows, one bank per row.

Bento uses the CSS Grid system to size the banks, and also comes with a sense of how big
each bank should be depending on its inputs. For example, an axis_control bank might be
2 rows by 2 columns (2x2) for 1 axis, and it will try for 2x6 if you have 3 axes
defined. If you try to pack in a lot in a row, Bento will trim from each until they fit.

Beginner Tutorial

This is intended as a fast, but not too furious, introduction to the Bento system.
You’re going build a functional, interactive dashboard in a matter of minutes. Not to
worry, you will be handed all of the pieces you need with instructions on where they go
and a brief explanation of how the pieces fit. And, each step will give a visual result
which you can check against some of the checkpoint images. The goal is to convey the
fundamentals of the system without going into details.

As a straightforward example, let’s build a dashboard that visualizes historical stock
prices for a few large tech companies. As perhaps one of the most commonly experienced
chart types in the world, most people should have some idea of what to expect here. You
can see what we’re gonna end up with by running $ bento-demo and clicking to the
stock page on the app bar. (Make sure you’ve followed the Bento Quickstart [https://github.com/dereklarson/bento])

	We can break this project up into four stages:
	
	Plan the basic features

	Prepare the data we are using

	Set up our Bento dev environment

	Write the descriptor (which we’ll break out into pieces)

Note

For the foreseeable future (how long is that, really?), only ‘Nix environments
are gonna be supported (namely Mac and Linux) so we’ll take some liberties in
assuming that.

Features

What should our dashboard do? It’s a tough question if you are trying to predict the end
product–there are a lot of unknowns (Who is the target user? What interactions will
work well? Will the dashboard get cluttered? What does Bento even support doing?) so let’s just
try to start with a good first draft. We’d like to at least be able to plot comparative
traces of stock gains. For this, we’ll need the ability to select the ticker symbols to
show. A way to choose a period in time for comparison would also be useful. Lastly, we
would also need a way to normalize the prices into percentage gains from the start of
our interval.

	This translates into 4 total Bento banks:
	
	A selector – a multi-selection dropdown tied stock ticker symbols

	A date_control – a two-sided slider bar, letting one choose a date interval

	An analytics_set – a toolkit that contains a normalization option

	Lastly, a standard graph for the plotting of the time series

Data

Bento leaves the data preparation to the user, by design. But for this example, we will
simply use the sample stock dataset packaged with Bento (I suppose it is a stock stock
dataset…apologies). Not only is this data prepared, but it is also supplied in the
expected structure:

{
 "df": your_dataframe_object,
 "keys": ["key_column_1", "key_column_2"],
 "types": {"measurement_column_1": int}
}

The structure above contains the data as a Pandas DataFrame and adds descriptive info:
identifying the columns that are keys (which help locate rows of interest) and
for those that contain metrics with their types (usually date, float, int). The metadata
helps Bento supply automated defaults, helping ensure your app works right away.
For example, sample stock data metadata looks something like

{
 "df": <the DataFrame object>,
 "keys": ["symbol"],
 "types": {"open": float, "close": float, "volume": int}
}

Can you guess how Bento incorporates this?

Note

Exploring a sample dataset is straightforward, for example try:

>>> from bento.sample_data import stock
>>> dataset = stock.load()
>>> print(dataset['df'])

Ultimately, Bento requires a module that can be imported to load the data. So in
this case that is bento.sample_data.stock, which we’ll use shortly!

Environment

Now that you’re palpably excited from visualizing the dashboard, it’s best to channel some
of that energy into setting up your development environment. This will save a lot of
time and headache down the road. I recommend going through the Quickstart steps
at the Bento Builder [https://github.com/dereklarson/bento_builder] repo.
Make sure $./build.py simple_example -dbu works, because we’ll be using the
same flags.

Once that is done, make a new directory called beginner and open a new file
descriptor.py for editing in your favorite editor:

$ mkdir beginner
$ vi beginner/descriptor.py

Note

If you want some extra credit, add a version file to avoid a later warning

$ echo ‘__version__ = “0.0.1”’ > beginner/_version.py

Descriptor

And now for the main course, let’s write the Bento descriptor. This is the piece that
really ties the room together.

Step 1

We’re going to start with the most basic, functional
skeleton to start. This entails declaring the data source (the stock sample data, as above)
and defines a single page containing a single bank (of type “graph”).

beginner/descriptor.py
descriptor = {
 "data": {"stock": {"module": "bento.sample_data.stock"}},
 "pages": {"main_page": {"dataid": "stock", "banks": {"traces": {"type": "graph"}}}}
}

This should get us a graph that displays our DataFrame blindly. Go ahead and paste that
into the descriptor file. Now you can run the build script:

$./build.py beginner -dbu

And if all is good, you can go to localhost:7777 and see something (ugly) like this:

[image: Initial appearance of your stock app]
Don’t worry, this will clean up pretty quick.

	So here’s what’s important to know about what we did:
	
	We named the key in data something unique and relevant (“stock”)

	The key matches the value of the dataid for our page

	The module for our data entry is set to the sample data

	Our page has a banks key with a valid dictionary of our single bank

	The main_page and traces strings just represent unique names we can make up

Step 2

	Let’s add a few quick aesthetic improvements:
	
	Add an appbar to the descriptor, which sets a title/subtitle and contains any nav links

	Change the theme to dark

	Set the graph trace mode to lines

	Also let’s break out the page definition from the main dictionary

Try them in any order by looking at the completed version below:

beginner/descriptor.py
main_page = {
 "dataid": "stock",
 "banks": {
 "traces": {"type": "graph", "mode": "lines"},
 },
}

descriptor = {
 "name": "beginner_tutorial",
 "theme": "dark",
 "appbar": {
 "title": "Tech Stock Prices",
 "subtitle": "A simple Bento starting point",
 },
 "data": {"stock": {"module": "bento.sample_data.stock"}},
 "pages": {"main": main_page},
}

The full result should look like:

[image: First interactivity is working]

Step 3

Now let’s start cooking with gas. First, we’ll add all the banks we had planned. Simply
add these lines to the banks dict:

"analytics": {"type": "analytics_set"},
"interval": {"type": "date_slider", "variant": "range"},
"symbols": {"type": "selector", "columns": ["symbol"]},

You should now get some new blocks showing up, but they aren’t very well-organized. As in,
they are just stacked on top of each other, rather lazily. We can fix that by supplying
a layout. This should be intuitive, just add this to the page dict and see if it makes sense:

"layout": [["symbols", "interval", "analytics"], ["traces"]],

Currently, Bento expects a 2-D array of bank IDs, but a generalization to N-D could be
in the cards.

Perhaps you’re also frustrated that these don’t do anything yet. That’s because we haven’t
told the app to connect the banks. This part is, I think, delightfully straightforward–just
define the many-to-many graph of connections between banks. In this case, it’s just the
following new dictionary keyed into the page:

"connections": {
 "analytics": {"traces"},
 "interval": {"traces"},
 "symbols": {"traces"},
},

Now stuff should happen. And there was much rejoicing. If not, double-check against the
full descriptor below

See the full descriptormain_page = {
 "dataid": "stock",
 "banks": {
 "traces": {"type": "graph", "mode": "lines"},
 "analytics": {"type": "analytics_set"},
 "interval": {"type": "date_slider", "variant": "range"},
 "symbols": {"type": "selector", "columns": ["symbol"]},
 },
 "layout": [["symbols", "interval", "analytics"], ["traces"]],
 "connections": {
 "interval": {"traces"},
 "symbols": {"traces"},
 "analytics": {"traces"},
 },
}

descriptor = {
 "name": "beginner_tutorial",
 "theme": "dark",
 "appbar": {
 "title": "Tech Stock Prices",
 "subtitle": "A simple Bento starting point",
 },
 "data": {"stock": {"module": "bento.sample_data.stock"}},
 "pages": {"main": main_page},
}

[image: First interactivity is working]

API Reference

	Bento class

	Descriptor schema

	Utility functions

Bento class

The fundamental Bento class that ties all of Bento’s functionality together.

	
class bento.bento.Bento(descriptor: Dict, init_only: bool = False)

	Acts as the gateway to all Bento functionality.

	descriptordict
	The descriptor contains all of the user-supplied information defining the
desired dashboard. See the user guide for creating a descriptor.

	init_onlybool
	Supply True in order to halt the automatic processing of the descriptor. This
can be useful for debugging or modifying the standard app-creation process.

	
desc

	This stores the normalized version of the input descriptor.

	Type

	dict

	
data

	Contains the data as a dictionary. TODO

	Type

	dict

	
valid

	Whether the descriptor meets the schema. If False, will block processing.

	Type

	bool

	
context

	Specifies the app for consumption by a Jinja template.

	Type

	dict

Examples

	Simple:
	>>> bento = Bento(my_descriptor)
>>> bento.write()

	Advanced:
	>>> bento = Bento(my_descriptor, init_only=True)
>>> test_page = bento.desc["pages"]["test"]
>>> bento.create_page("test", test_page)
>>> bento.context["pages"]["test"] = alternate_grid_method(test_page)
>>> bento.connect_page(test_page)
>>> bento.write(app_output="modified_test_layout.py")

	
connect_page(page: Dict)

	Applies the requested connections for the page to the Jinja context

A page is a set of connected banks, and the connections are defined by
a supplied directed graph (dict of sets) of bank_ids. For example,
{‘axes’: {‘map’, ‘counter’}, ‘colors’: {‘map’}} tells us the axes bank
should feed both the map and counter banks, while our colors bank should
feed just the map.

	
create_page(pageid: str, page: Dict)

	Generates and lays out all banks defined for a page and updates the context

A page is composed of a set of banks, arranged based on a supplied layout
object (an array of 2+ dim).

	
is_valid(descriptor: Dict) → bool

	Ensures the descriptor meets the Cerberus schema (see schema.py)

	
normalize(descriptor: Dict) → Dict

	Auto-trims and -fills the descriptor.

	Removes any dangling bankids, assuming ‘banks’ keys as source of truth

	Generates full bankid (pageid + bankname)

	Handle most defaults here so they aren’t scattered about

	
write(app_output: str = 'bento_app.py', css_folder: str = 'assets')

	Creates all of the standard Bento output files.

This is a convenience wrapper that allows for one simple call to generate
all of the application code for the output Bento app, usually a set of Python
and CSS files.

Descriptor schema

	To get a quick sense of the schema, I recommend looking at the following examples:
	
	A bare-bones dash [https://github.com/dereklarson/bento/blob/master/bento/dashboards/simple.py]
- Run python3 -m bento.dashboards.simple then python3 bento_app.py to view

	The demo dash [https://github.com/dereklarson/bento/blob/master/bento/dashboards/demo.py]
- Run bento-demo to see it in action

The full schema follows, which, for now, is a simple dump of the Cerberus schema:

Page and bank ids, are strings of word characters only with length 2+
No trailing, leading, or double underscores
bento_uid_regex = r"^(?!_|.*_$|.*__.*)[a-z0-9_]{2,}$"

One or more words separated by a space
words_regex = r"^\w+(\w+)*$"

page_schema = {
 "banks": {
 "type": "dict",
 "required": True,
 "allow_unknown": True,
 "minlength": 1,
 "keysrules": {"type": "string", "regex": bento_uid_regex},
 "valuesrules": {
 "type": "dict",
 "allow_unknown": True,
 "schema": {
 "type": {"type": "string", "required": True, "regex": bento_uid_regex},
 "width": {"type": "integer"},
 "args": {"type": "dict"},
 },
 },
 },
 "connections": {"type": "dict"},
 "dataid": {"type": "string"},
 "layout": {"type": "list"},
 "sidebar": {"type": "list"},
 "title": {"type": "string"},
 "subtitle": {"type": "string"},
}

descriptor_schema = {
 "name": {"type": "string"},
 "theme": {"type": "string", "regex": words_regex},
 "theme_dict": {"type": "dict"},
 "appbar": {
 "type": "dict",
 "schema": {
 "title": {"type": "string"},
 "subtitle": {"type": "string"},
 "image": {"type": "string"},
 },
 },
 "data": {"type": "dict"},
 "show_help": {"type": "boolean"},
 "pages": {
 "type": "dict",
 "allow_unknown": True,
 "required": True,
 "minlength": 1,
 "keysrules": {"type": "string", "regex": bento_uid_regex},
 "valuesrules": {"type": "dict", "schema": page_schema},
 },
}

Utility functions

Test folding
	
bento.util.desnake(text)

	Turns underscores into spaces

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bento	

 	
 	
 bento.bento	

Index

 B
 | C
 | D
 | I
 | M
 | N
 | V
 | W

B

 	
 	Bento (class in bento.bento)

 	
 	
 bento.bento

 	module

C

 	
 	connect_page() (bento.bento.Bento method)

 	
 	context (bento.bento.Bento attribute)

 	create_page() (bento.bento.Bento method)

D

 	
 	data (bento.bento.Bento attribute)

 	
 	desc (bento.bento.Bento attribute)

 	desnake() (in module bento.util)

I

 	
 	is_valid() (bento.bento.Bento method)

M

 	
 	
 module

 	bento.bento

N

 	
 	normalize() (bento.bento.Bento method)

V

 	
 	valid (bento.bento.Bento attribute)

W

 	
 	write() (bento.bento.Bento method)

 nav.xhtml

 Table of Contents

 		
 bento-dash

 		
 Introduction

 		
 Quickstart

 		
 Installation

 		
 Run Demo

 		
 Modify Demo

 		
 Fallback

 		
 Bento Builder

 		
 Concepts within Bento

 		
 Data

 		
 Pages

 		
 Banks

 		
 Connections

 		
 Layout

 		
 Beginner Tutorial

 		
 Features

 		
 Data

 		
 Environment

 		
 Descriptor

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 API Reference

 		
 Bento class

 		
 Descriptor schema

 		
 Utility functions

_static/file.png

_images/beginner_step3.png
TeC StOCk PFICGS A simple Bento starting point

Select Symbol Select range of date: Averaging Window Normalize By: Sums And Rates

W@
T

4000

3500

3000

2500

2000

Open

1500

1000

500

2002 2004 2006 2008 2010 2012 2014 2016 2018

Date

_static/minus.png

_static/plus.png

_images/beginner_step1.png
6+ OEAXA Ta= M

_images/beginner_step2.png
TeC OCk PI’ICGS A simple Bento starting point

4000

3500

3000

2500

2000

Open

1500

1000

500

T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Date

